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Efficient cortical coding of 3D posture
in freely behaving rats
Bartul Mimica*†, Benjamin A. Dunn*, Tuce Tombaz,
V. P. T. N. C. Srikanth Bojja, Jonathan R. Whitlock†

Animals constantly update their body posture to meet behavioral demands, but little is known
about the neural signals on which this depends.We therefore tracked freely foraging rats in
three dimensions while recording from the posterior parietal cortex (PPC) and the frontal motor
cortex (M2), areas critical for movement planning and navigation. Both regions showed strong
tuning to posture of the head, neck, and back, but signals for movement were much less
dominant. Head and back representations were organized topographically across the PPC
and M2, and more neurons represented postures that occurred less often. Simultaneous
recordings across areas were sufficiently robust to decode ongoing behavior and showed
that spiking in the PPC tended to precede that inM2. Both the PPC andM2 strongly represent
posture by using a spatially organized, energetically efficient population code.

M
ore than a century of clinical observations
have implicated the posterior parietal
cortex (PPC) and related networks as
essential for maintaining awareness of
the spatial configuration of the body, or

“body schema” (1, 2). Consistent with this notion,
neurophysiological investigations in head-fixed
subjects have identified key roles for the PPC and
frontal motor cortices in controlling the posi-
tioning of individual effectors, such as the eye,
arm, or hand (3–10). Parallel studies in rodents
have demonstrated ostensibly similar functions
for the PPC and frontal motor cortex region M2
in spatial orienting (11), movement planning
(12–14), and navigation (15–17), but the field
still lacks a quantitative understanding of how
the cortex represents posture in freely behav-
ing individuals.
We therefore tracked the heads and backs of 11

rats in three dimensions while recording neural
ensembles with dual microdrives targeting deep
(>500 mm) layers of the PPC and M2, which ex-
hibit thalamic, cortical, and subcortical connec-
tions similar to those of the PPC and premotor
areas acrossmammals (16–18). We recorded 729
well-isolated single units in the PPC and 808units
in M2 during 20-min foraging sessions in a 2-m
octagonal arena (fig. S1 and movie S1).
By measuring Euler angles (pitch, azimuth,

and roll) of the head, pitch and azimuthal flexion
of the back, and neck elevation in an egocentric
reference frame (Fig. 1A andmethods), we found
robust tuning curves for all postural features
in the PPC and M2, with peak rates often >5
standard deviations (SD) from the shuffled
distribution (Fig. 1, B to G). Themajority of cells
with tuning peaks exceeding the 99th percentile
of the shuffled data (fig. S3, A and B) were stable

across recording sessions (mean of 56.4% in the
PPC and 57.8% in M2) (Fig. 1, B to G, and table
S1). Postural tuning was also stable across light
and dark sessions (fig. S4), indicating its inde-
pendence from allocentric landmarks and visu-
ally oriented attention (18).
Cells in the PPC andM2 frequently responded

to conjunctive postures involving the head, back,
or whole body (Fig. 2, A and C, and movies S2 to
S6), prompting us to build a generalized linear
model (GLM) (methods) to identify features best
explaining neural activity. We utilized a forward-
search procedure in which egocentric posture
variables and their derivatives, as well as allocen-
tric features including head direction, running
direction, and spatial location, were added until
the cross-validatedmodel performance no longer
improved significantly (19) (methods).
This approach indicated that the largest

fractions of cells in the PPC (n = 237, 32.5% of
729 cells) and M2 (n = 316, 39.1% of 808 cells)
were driven by postural features of the head,
including interactions (e.g., between pitch and
azimuth), conjunctions of head posture and neck
height, and movement (Fig. 2, B and D). Sub-
stantial fractions of cells were also tuned to back
posture or movement (n = 69, 9.5% in the PPC;
n = 75, 9.3% in M2), as well as elevation or move-
ment of the neck (n = 43, 5.9% in the PPC; n =
84, 10.4% in M2) (Fig. 2, B and D, and table S2).
Smaller percentages of cells exhibited whole-body
tuning, being driven by combinations of head,
neck, and back angles [n = 29, 4.0%, Z = 7.9, P <
0.001 in the PPC (large-sample binomial test
with expected null probability P0 of 0.01); n =
27, 3.3%, Z = 6.5, P < 0.001 in M2].
Running speed (n = 38 cells, 5.2% in the PPC;

n = 26 cells, 3.2% in M2) and self-motion (n =
15 cells, 2.1%, Z = 2.7, P < 0.01 in the PPC; n = 4
cells, 0.5%, Z=−1.3,P> 0.95 inM2) (Fig. 2, B and
D; fig. S5; and table S2) accounted for consider-
ably less of the population than posture (fig. S5).
Weaker still were allocentric signals, including
head and running direction (Z = −0.67, P > 0.85

in the PPC; Z = −0.56, P > 0.81 inM2) and spatial
location (Z = −2.16, P > 0.99 in the PPC; Z = 0.86,
P > 0.19 in M2), which did not reach significance
in either area (Fig. 2, B and D, and table S2).
The statistical model indicated that the main

features driving cells in the PPC and M2 related
to posture (46.2% in the PPC; 58.7% in M2) as
opposed to movement (5.6% in the PPC; 3.6%
in M2). We tested this further by splitting re-
cording sessions on the basis of movement ve-
locity or posture and found that tuning curves
for posture remained virtually identical regard-
less of movement status, whereas tuning tomove-
ment varied unreliably when split by posture
(fig. S6). Postural tuning was thus expressed in-
dependently of movement, but not vice versa.
Previous studies showed anatomical organiza-

tion for body and facial movement in parietal
andmotor areas in various mammalian species
(20–23), so we assessed whether postural tuning
was also topographical. Head representation
in M2 was concentrated at anterior [c2(4) = 57.1,
P < 0.001; Yates corrected c2 test] (Fig. 3A) and
medial [c2(4) = 110.6, P < 0.001] locations,
whereas back posture predominated at the
posterior [c2(4) = 98.1, P < 0.001] and lateral
[c2(4) = 105, P < 0.001] poles (Fig. 3, A and B).
In the PPC, anteromedial sites adjacent to M2
showed the strongest back tuning [c2(3) = 29.9,
P < 0.001, anterior-posterior gradient; c2(4) =
12.5, P < 0.05, medial-lateral], whereas posterior-
lateral regions responded primarily to head pos-
ture [c2(4) = 47.5, P < 0.001, anterior-posterior;
c2(4) = 52.4, P < 0.001, medial-lateral], producing
a coarse mirroring of head and back representa-
tion across the PPC and M2 (Fig. 3A).
Because the PPC and frontal motor cortices

form an extended network supporting spatial
movement planning and decision-making (24–27),
we asked whether structured correlations ex-
isted between spikes recorded simultaneously
across areas (n = 5 rats). We screened for cells
with significant interregional signal correlations
(methods) and identified 1017 positively and
182 negatively correlated pairs in one recording
session (n = 15 sessions) and 758 positively and
141 negatively correlated pairs in a second ses-
sion (n = 14 sessions) the same day. The average
normalized positive cross correlations indicated
a consistent peak, with the PPC preceding M2
by 50 ms across sessions [−72 ms, −32 ms, boot-
strapped 99% confidence interval (CI) for ses-
sion one; −71 ms, −31 ms for session two] and
negative correlations peaking at−85ms [−190ms,
+16 ms] in session one and −25 ms [−140 ms,
+82 ms] in session two (Fig. 3, C and D).
To next address whether population activity

was sufficient to reconstruct behavior, we reduced
the behavioral dataset from six dimensions (three
axes for the head, two for the back, and one for
neck elevation) to two by using Isomap (28). This
rendered posture for the head, back, and neck on
a two-dimensional (2D) surface, or “posturemap,”
with each pixel corresponding to a particular
bodily configuration (fig. S7). We chose a session
with 37 PPC and 22 M2 neurons recorded sim-
ultaneously to train a uniform prior decoder to
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Fig. 1. The PPC and M2
show stable 1D tuning curves
for postural features of
the head, back, and neck.
(A) (Left) Schematic for the
head and three markers along
the back (methods and fig. S1).
(Middle) Back pitch (blue
arrow), neck elevation
(orange arrow), and head pitch
(red arrow) were calculated
relative to the arena floor.
Red spheres represent the
markers along the back.
(Right) Azimuths of the head
(dark pink arrow) and back
(blue arrow) were measured
relative to the body axis
vector, from the tail to
the base of the neck. Head
roll (light pink arrow) was
calculated relative to the arena
floor. (B) (Left) 1D tuning
curves for PPC cells for head
posture, measured in two
open-field sessions, with the
95% CI for shuffled data shown
in gray. (Right) Cumulative
frequency curves for tuning
stability for each feature
(arrowheads mark the
95th percentile of the null
distribution; detailed results
are in table S1). (C) (Left)
Tuning curves for back
pitch (top) and azimuth
(bottom). (Right) Across-
session stability. (D) Same as
(C) but for neck elevation.
(E to G) Same as (B) to
(D) but for M2.
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predict the animal’s dynamic position on the
posture map on withheld segments (Fig. 4A
and movies S7 and S8). Decoder performance,
on average, exceeded the shuffled distribution
by >45 SD (Fig. 4B).
Cumulative occupancy on the posture map

was dominated by epochs when the animal was
on all fours with its head lowered (i.e., foraging)

(Fig. 4C, left). We found significantly fewer cells
tuned to these high-occupancy, or “default,”
postures (Fig. 4C, dashed oval), whereas less-
visited postures were represented more densely
by the ensemble (t10 = 4.82,P < 0.01,Welch’s two-
sided t test) (Fig. 4D, left). The same pattern was
observed across animals (t10 = 7.74, P < 0.001)
(Fig. 4D, right, and fig. S8), suggesting that

receptive fields were distributed on the basis of
occupancy. Despite this anisotropy in represen-
tation, decoder performance was significantly
better than chance for all postures, with smaller
error for high- than for low-occupancy postures
(t74 = 6.21, P < 0.001) (Fig. 4E).
The finding that cell populations in parietal

and frontal motor cortices represent 3D posture
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Fig. 2. The PPC and
M2 are tuned to combi-
nations of head, back,
and neck positions.
(A) Example PPC cells
tuned to combinations of
head, back, and neck
positions. Conjunctive
representations produce
single-firing fields in
the 2D rate maps;
maximal firing rates (in
hertz) are indicated
above each map (top).
3D animal models
(bottom) depict postures
to which cells were
tuned. Cell 1 preferred
whole-body flexion and
head roll to the right;
cell 2 fired during
rearing, with firing driven
by the interaction of
head pitch with neck
elevation. (B) Distribution
of behavioral tuning in
the PPC as determined
by the GLM (see the
color-coded legend and
table S2 for detailed
results). (C) Examples of
postural tuning in M2
cells. Cell 3 (top right)
fired when the head,
back, and neck were
raised vertically; cell 4
was tuned to leftward
head roll and back flexion
during sharp turns.
(D) Distribution of
coding properties for
808 M2 cells.
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robustly and in larger proportions than other
behavioral features complements and extends
decades of study on the positional coding of single
effectors in stationary animals [e.g., (5, 29–31)].
The predominance of postural tuning in our data

may reflect the myriad kinematic computa-
tions that must be solved to coordinate whole-
body movement during free behavior. It is also
consistent with a functional division of labor in
which higher cortical areas specify body position

and goals (32–34) whereas descending motor
pathways and subcortical nuclei control move-
ment dynamics more directly (35–39).
The topographical distribution of postural

tuning for the head and back appeared to follow
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Fig. 3. Head and back posture were organized topographically across
the PPC and M2, and the PPC led cross correlations between areas.
(A) Dorsal view of the cortex with boundaries delineating primary and
secondary motor cortices (M) and somatosensory (S), retrosplenial
(R), posterior parietal (P), and visual (V) cortices. The magnified view
(right) shows recording locations (gray dots; 41 sites in M2, 40 sites
in the PPC), and shading indicates tuning for the head (red) and back
(blue). The black dot represents the bregma, with distance marked in
millimeters. (B) Percentages of cells in M2 (top) and the PPC (bottom)

driven by head and back positions. For all comparisons, the actual distribution
of tuning differed significantly from theoretical distributions that assumed
a constant proportion of tuned cells across bins. (C) Four cell pairs in
the PPC and M2 showing stable z-scored cross correlations, with the PPC
preceding M2. Dashed and solid lines represent the temporal offset of
the cross-correlation peaks and time zero, respectively. Gray-shaded areas
indicate ±6 SD of the shuffled data. (D) The normalized cross correlation
for all cell pairs shows a negative peak for the PPC relative to M2 for positive
and negative correlations. Shading indicates the 99% CI.
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a functional organization identified in earlier
microstimulation studies in anaesthetized animals
(22, 23). We found mainly head and back repre-
sentation in the PPC and M2, but it is possible
that posture for the entire body overlays the
cortical surface, including primary somatosensory
andmotor cortices.More broadly, it remains to be
established whether postural signals are gener-
ated in the cortex specifically or whether they are
inherited fromother regions.Our cross-correlation
analyses also suggest that a temporal structure
exists for postural representations across areas,
with thePPCoperatingupstream fromM2, though
such an ordering could shift in the context of dif-
ferent tasks (26).
Our use of 3D tracking additionally revealed

that speed and self-motion tuning in the PPC
(13, 14, 40) were likely overestimated in previous
studies using 2D tracking of rodents, owing to
insufficient resolution to disambiguate posture
from movement. Tracking the back allowed us
to detect neural tuning to flexion of the trunk,
indicating that vestibular signaling (41) alone
could not explain the postural coding in our
recordings. For both the back and the head, the
arrangement of postural tuning peaks was nota-
bly nonuniform and appeared to be optimized for
the duration for which postures were occupied
(Fig. 4D and figs. S3, A and B, and S8). Previous
theoretical works considering optimal coding
strategies in sensory systems (42, 43) suggested
that the range of the stimulus spectrum visited
most should be encoded by more cells with nar-
rower tuning widths, but this was not the case in
our data. Rather, we found that proportionately
less of the networkwas dedicated to default states
in which the animals spent more time. This ar-
rangement allowed high-fidelity decoding of the
entire range of postures while minimizing meta-
bolic demand on the cells, making it both precise
and efficient. Together, our results strongly sup-
port the notion that the PPC-M2 network plays
a key role in representing the dynamic organiza-
tion of the body in space, or body schema, pos-
tulated more than 100 years ago (1, 2).
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cell sample size (red dots), with the null distribution above (black dots).The shaded area indicates ±3 SD.
(C) (Left) Cumulative occupancy on the Isomap showed that the longest dwell times were in the low center
of the map, corresponding to foraging.The dashed oval delineates the high-occupancy area where the
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Materials and Methods 27 

Subjects and electrode implantation. 28 

Experiments were performed in accordance with the Norwegian Animal Welfare Act and the 29 

European Convention for the Protection of Vertebrate Animals used for Experimental and 30 

Other Scientific Purposes. The study contained no randomization to experimental 31 

treatments and no blinding. Sample size (number of animals) was set a priori to two or 32 

more, considered as the minimum required to obtain the number of cells needed for 33 

statistical analysis of the present type of data. No statistical method was used to 34 

predetermine sample size. Neuronal activity was recorded from nine male and two female 35 

Long-Evans rats (3–5 months old, 400–600 g) with chronically implanted dual microdrives. A 36 

silicon probe (NeuroNexus Inc., MI, USA; custom design based on A8x1-tet-2mm-200-121) 37 

was mounted on each microdrive. One probe targeted PPC (-3.8 to -4.25mm AP, center shank 38 

2.7mm ML) and one targeted M2 (center shank +0.5mm AP, 0.7mm ML). Each probe had eight 39 

55µm wide, 15µm thick, 2mm long shanks, with four 160µm2 iridium recording sites 40 

configured as a tetrode at each tip; inter-shank spacing was 200µm. At surgery, animals were 41 

anesthetized in a ventilated Plexiglas box with 5% isoflurane vapor, and maintained on 1.0-42 

2.5% isofluorane for the duration of surgery. Body temperature was maintained at 37°C with 43 

a heating pad. Once unconscious, animals received s.c. injections of analgesic (Metacam 44 

2.5mg/kg weight, Temgesic (buprenorphine) 0.05mg/kg). Local anesthetic (Marcain 0.5%) 45 

was injected under the scalp before making the incision. The skull was then exposed, rinsed 46 

and sterilized using 0.9% saline and 3% hydrogen peroxide. A high-speed dental drill with 47 

0.8mm burr was used to drill holes for skull screws and craniotomies over PPC and M2. Bone-48 

tapping stainless steel screws were inserted securely into the skull, with a single screw serving 49 

as the ground wire and reference for both drives. The microdrives were housed in a single 3D 50 



printed unit that was lowered with probes targeting the right hemisphere. The drive unit was 51 

cemented to the skull, and probes were lowered into the brain, and craniotomies were filled 52 

with a 70-30% mixture of mineral oil and low-melt bone wax (Sigma-Aldrich Norway AS, Oslo, 53 

Norway). After surgery rats awoke in a 32°C heated chamber, were returned to their home 54 

cage, and later administered post-operative analgesics. Rats were housed individually in 55 

Plexiglas cages (45 x 44 x 30 cm) in a humidity and temperature-controlled environment, and 56 

kept on a 12 hr light/12 hr dark schedule. All training and testing occurred in the dark phase.  57 

 58 

In vivo electrophysiology and behavior. 59 

Single units, LFP or raw signal from PPC and M2 were sampled with a Digital Lynx 4SX 60 

recording station (Neuralynx Inc. Montana, USA). Rats were connected via AC-coupled unity-61 

gain operational amplifiers above the head (via H32-to-HS36 custom head stages, Neuralynx 62 

Inc.), which connected to a motorized commutator above the arena. Elastic string was used 63 

to counterbalance weight and excess cable length, allowing animals to move freely in the 64 

recording arena.  65 

Silicon probes were lowered in 50µm steps while the rat rested on a towel in a flower 66 

pot on a pedestal. Turning stopped when well-separated units appeared, typically between 67 

500 and 1800µm. Data collection started when signal amplitudes exceeded ~4 times the noise 68 

level (r.m.s. 20-30µV) and units were stable for > 3hr. After recording at a given depth, PPC 69 

and M2 probes were lowered to obtain new cells; probe depths typically differed by 100µm 70 

or more between recording days.  71 

Behavioral recordings were performed as rats foraged for crumbs of chocolate, cereal 72 

or vanilla cookies thrown randomly into an octagonal, black open-field arena (2 × 2 × 0.8 m), 73 



with the animals oriented by extra-arena room cues. Recordings began once the animals 74 

achieved routine, complete coverage of the arena. Recording sessions typically lasted just 75 

over 20 minutes (average length 1335s, total range of 610-2467s). Rats rested a minimum of 76 

1 hour in their home cage between runs. 77 

Two animals (#23938 and #23939) were expressing rAAV8/CamKII-Jaws-KGC-GFP-ER2 78 

after bilateral injections to M2, but no light was activated during the reported recording 79 

sessions.  80 

 81 

Spike sorting and analysis of firing rates during behavior. 82 

For the first six rats, spike data were clustered automatically with KlustaKwik (K. Harris, 83 

http://klustakwik.sourceforge.net/) then sorted manually using graphical cluster-cutting 84 

software (45). For the remaining five animals, raw signal Neuralynx files collected on the same 85 

recording day were converted to binary format and concatenated, such that the identity of 86 

isolated units could be preserved across sessions. Spike sorting was performed offline with 87 

Kilosort (46), followed by manual curation in Phy (C. Rossant, 88 

https://github.com/kwikteam/phy). Clusters were merged or separated based on waveform 89 

similarity, spike rate auto- and cross-correlation and masked cluster quality measures. 90 

Clusters with ≥ 2% violation of a 2ms inter-spike interval were discarded. After spikes were 91 

split into individual sessions for each cluster, only cells with >100 spikes per session were kept 92 

for further analyses. 93 

 94 

 95 

 96 



3D tracking and model assignment. 97 

For tracking the head, four 9mm retroreflective markers (ca. 6cm apart) were affixed to a rigid 98 

body clamped above the recording drives. For the back, three 9mm circular cut outs of 99 

retroreflective tape (3M) were each affixed to shaved locations at the shoulder blades, the 100 

hunch of the back, and above the root of the tail. Position data were recorded at 120 fps using 101 

a 6-camera infrared recording system (OptiTrack, Oregon, USA), and registered using optical 102 

motion capture software (Motive, version 1.8, 1.9 or 1.10.2; OptiTrack). 103 

For seven of 11 animals (tracked with Motive versions 1.9 or 1.10.2), labeling of 104 

individual markers was performed with the in-built labelling functions in Motive on raw .tak 105 

files. Specifically, the 3D data was first deleted. Then, a rigid body was constructed from the 106 

four head markers (in the same way across animals), and the three body markers were kept 107 

in a separate marker set. Both marker assets were then dragged onto the take and the 108 

“reconstruct and autolabel” function was applied. Depending on the results, errors in marker 109 

assignment were corrected and the unlabeled points were hand labelled. The percentage of 110 

the sessions for which individual markers (across animals, across sessions) was tracked were 111 

as follows: 98.51% above the base of the tail (total range: 91-99%), 97.66% for the middle of 112 

the back (total range: 87-99%), and 96.33% for between the shoulder blades (total range: 83-113 

99%). For each of the head markers, the mean percentages were 99% for head 1 (total range: 114 

99-99%), 98.78% for head 2 (total range: 85-99%), 98.61% for head 3 (total range: 88-99%) 115 

and 98.89% for head 4 (total range: 95-99%). The head as a whole was captured 98.82% of 116 

the time (total range: 85-99%). After each session was labeled, remaining unlabeled markers 117 

were deleted and the data were exported as a .csv file, with units in meters and individual 118 

markers (not rigid body) as output. A brief, custom-written Python script was used to convert 119 



the .csv file into a .pkl file, which was modified for usage in a custom graphical user interface 120 

(GUI). In the GUI, the head coordinate system was constructed and the tracking data was 121 

merged with spike data for further processing. 122 

For the remaining four animals (tracked using Motive version 1.8), raw data was 123 

exported as a .csv file, with units in meters and individual markers as output. The .csv file was 124 

then loaded into the GUI and each point was hand labelled for > 90% of the time it was tracked 125 

each session. The mean number of frames across all open field sessions was 160159.1 (total 126 

range: 73231-296021). 127 

For all animals, files containing tracked points were loaded into the GUI, where the 128 

coordinate system for the rigid body on the head was translated to minimize jitter, which 129 

roughly corresponded to placing it at the base of the head.  We then rotated the coordinate 130 

system such that, on average, the x-direction of the head closely matched the horizontal 131 

movement direction. 132 

 133 

Extracting behavioral variables from tracking data.  134 

Following the recording, we labelled tracked points within the Motive (OptiTrack) interface, 135 

and imported the labelled data into a custom script in Fiji. Using the four tracked points on 136 

the animal's head, we estimated the geometry of the rigid body using the average pairwise 137 

distances between markers. We then found the time point at which this geometry was closest 138 

to the average, and used that time point as a template. We then assigned an XYZ coordinate 139 

system to the template with the origin located at the centroid of the four points, and 140 

constructed coordinate systems at each time point of the experiment by finding the optimal 141 

rigid body transformation (47) of the template to the location of the head markers. In order 142 



to find the likely axis of rotation for the head (i.e. the base of the head), we found the 143 

translation of the coordinate system that minimized the Euclidean distance between the 144 

origin at time point t-20 and t+20, where t is measured in frames from the tracking system 145 

(120 Hz). Next, the coordinate system was rotated to most closely match the Z-direction with 146 

the vertical direction of the room, and X-direction with that of the running direction, which 147 

was defined by horizontal movements of the origin from t-50 to t+50. Only time points where 148 

speed exceeded 10 cm/s were used to estimate running direction. The two objectives were 149 

combined by considering the sum of squared differences of the two sets of angles. This 150 

definition of running direction was used only to rotate the head direction, and was not used 151 

in subsequent analyses. Hyperparameters were chosen such that head placement using the 152 

resulting coordinate system visibly matched experiments. 153 

To compute the variables for relating tracking to neural activity, we first denoted body 154 

direction as the horizontal component of the vector from the marker on the animal's rear to 155 

the neck point. The angles of the head (pitch, azimuth and roll) relative to body direction were 156 

then computed assuming the XYZ Euler angle method. The back angles (pitch and azimuth) 157 

were determined relative to body direction using standard 2D rotations, which were optimally 158 

rotated such that the average peak of the occupancy was close to zero. The point on the neck 159 

was then used to determine neck elevation relative to the floor, as well as the horizontal 160 

position of the animal in the environment. Movement variables were estimated from the 161 

tracked angles using a central difference derivative with a time offset of 10 bins. Running 162 

speed was then estimated using a moving window of radius 15 bins. The values for self-motion 163 

were computed as the speed of the animal multiplied by the X and Y component of the 164 

difference in angles between the body direction at t-15 and t+15. We found this a more 165 

reliable representation of self-motion compared to previous mathematical descriptions (14). 166 



1D tuning curves. 167 

Angular behavioral variables were binned in 5°, with exception of back angles, which were 168 

lowered to 2.5°. Movement variables were binned in 36 equally-spaced bins, spanning the 169 

range of recorded variables such that there was a minimum occupancy of 400 milliseconds in 170 

both the first and last bins. Neck elevation bins were 1cm, while position in the environment 171 

was estimated using 6.67cm bins. Finally, self-motion used a bin size of 3cm/s. For all rate 172 

maps, the average firing rate per bin was calculated as the total number of spikes per bin, 173 

divided by total time spent in the bin. All smoothed rate maps were constructed with a 174 

Gaussian filter with standard deviations of 1 bin. Only bins with a minimum occupancy of 400 175 

milliseconds were used for subsequent analysis. To compare with shuffled distributions, we 176 

shifted the neural activity 1000 times on the interval of ±[15,60] seconds. 177 

 178 

Model selection. 179 

To determine which of the large number of tracked features best explained the neural activity 180 

we considered the neural activity binned to match the resolution of the tracking system (120 181 

Hz). We fit the neural data using a Bernoulli generalized linear model (48) assuming different 182 

versions of the natural parameter for each neurons, where each version contained a feature 183 

or sets of features as well as the constant term. We included each of the six postural features, 184 

their derivative values, body direction, head direction, speed, position and self-motion each 185 

in single variable models. We then maximized the likelihood of the data given each of the 186 

models using an L1 regularizer with λ= 10-4 for each model across 10 folds of the data. We 187 

tested all combinations of angles associated with the head, back, and a model with all six 188 

behavioral variables. 189 



We first compared the single feature models using the average cross-validated log-190 

likelihood ratio, keeping the model, if any, that had the highest positive score and was 191 

significantly different from zero (19). Significance was determined using a one-sided Wilcoxon 192 

signed rank test with significance of 0.01. Additional features were included if the increase in 193 

cross-validated log-likelihood ratio of the more complicated model was significantly more 194 

than that of the less-complicated model. Significance was again determined using a one-sided 195 

signed rank test with significance value of 0.01. 196 

 197 

Cross-correlations. 198 

In sessions with dual simultaneous recordings, firing rates were calculated for each cell in 5ms 199 

bins and smoothed with a Gaussian kernel (SD = 100ms). Pairwise cross-correlations 200 

(Pearson’s r) were computed between the activity of any given M2 cell with each of the 201 

simultaneously-recorded PPC cells by offsetting the spiking activity of the PPC cell at intervals 202 

of 5ms from -5 to 5 seconds. To obtain values for the null-distribution, the first cell pair was 203 

cross-correlated 1000 times with a random offset each time, ranging from ±20 to 40 seconds. 204 

Pairs were considered to be significant if their peak cross-correlation was greater than 0.1 (in 205 

absolute terms) and if they exceeded chance values by six SD for 200ms, centered at the peak. 206 

The example pair cross-correlations were z-scored, so session 1 and 2 could be shown on the 207 

same scale. Group results were obtained by normalizing all significant cross-correlations 208 

series by the absolute value of their peak and then averaging them at every time point. The 209 

grey shaded area represents the 99% CI for the resulting mean values. Bootstrapped values 210 

for the peaks were generated by resampling with replacement from the cross-correlation sets 211 

1000 times with significant positive or negative series. For each of the bootstraps, obtained 212 

series were normalized by the absolute value of their peak and then averaged at every time 213 



point. For each of the 1000 samples, we established the temporal offset of the peak/trough 214 

in the curve. We calculated the SD of the distribution of the peak/trough offsets and 215 

considered that the standard error of the population mean and obtained confidence intervals 216 

around bootstrapped means, which corresponded to the observed peaks to the third decimal.  217 

 218 

Decoding. 219 

In order to visualize and decode in the space of the six posture variables we used a common 220 

dimensionality reduction technique, Isomap (28), to reduce the space to two dimensions. We 221 

did this by first normalizing each of the features, dividing the values for each by the maximum 222 

of the absolute value of the feature. This bounded the angular values to [-1,1] and the neck 223 

elevation to [0,1]. We then applied Isomap from the python library Scikit-learn (49) with an 224 

assumed number of neighbors equal to 100, which resulted in an estimated reconstruction 225 

error of 0.03. 226 

In order to decode on this space, we again assumed the neural data were distributed 227 

according to a Bernoulli distribution and fit it with a GLM. In this case, however, we used a 228 

square grid, 22 X 22, of Gaussian functions with width of 0.25 units to serve as a basis set (50) 229 

for the Isomap surface, spanning the total space of 2.99 X 2.53 units. We used a small L1 230 

regularizer with λ= 10-7 and a 10 fold cross-validation scheme. The number and width of the 231 

basis functions as well as the value for the regularizer were determined by optimizing the 232 

average log-likelihood of the test sets. After fitting the model to the data, we computed the 233 

log-likelihood at each time point of the test data and for each bin of the binned posture map 234 

(50 X 50). To then visualize this as a dynamic map, Q(t,x,y), of the animal's likely position (x,y) 235 

in this posture space at time t, we let Q(t,x,y)=exp(Lave(t,x,y)), where Lave(t,x,y) was determined 236 



from a moving 150ms Gaussian average of the log-likelihood of the test data for each posture 237 

bin (x,y). The maps of Q(t,x,y) can be visualized in both Supplementary Videos 7-8 as well as 238 

in Figure 4a.  Only bins occupied >150ms are displayed in the figures. The most likely position 239 

at a given time bin t was then determined by finding the x,y position corresponding to the 240 

peak value of Q(t,x,y). The error between the values for x and y and the true position were 241 

then computed using the Euclidean distance. This was done for the entire recording of 59 242 

neurons as well as with subsets of neurons. To estimate performance with fewer neurons, we 243 

built the decoder using random subsets of 2, 6, 10, … 54 and 58 neurons. Decoding was 244 

repeated 100 times for each population size to compute a mean decoding accuracy.  For each 245 

population size, chance values were computed by shuffling the spikes of each neuron 246 

independently by a number of ±[10,120] seconds. This procedure was repeated 100 times for 247 

each population size. To estimate the likely number of neurons required for perfect decoding 248 

of the posture space, we extrapolated a linear fit to the reconstruction error as a function of 249 

the log of the number of neurons. Finally, decoder error as a function of bins in the posture 250 

map was estimated by taking the average error of the moments the animal was located in a 251 

given posture bin.  252 

 253 

Histology.  254 

Silicon shanks were left in place after the final recording session. The rats received an 255 

overdose of Isofluorane and were perfused intracardially with saline and 10 % formalin or 4% 256 

paraformaldehyde. Electrodes were removed 60-120 min after perfusion, and brains were 257 

extracted and stored in DMSO. Frozen sagittal sections (30 µm) were cut in a cryostat, all 258 

sections were mounted on glass slides and stained with cresyl violet. Using a digital scanner 259 



and scanning software (Carl Zeiss AS, Oslo, Norway), electrode locations in PPC and M2 were 260 

registered with respect to local anatomical landmarks. Recoding sites were located on 261 

photomicrographs obtained using ZEN (blue edition) and imported to Adobe Illustrator. The 262 

position of the electrodes during recording was extrapolated using the read-out of the tetrode 263 

turning protocol and taking shrinkage (~20%) from histological procedures into account. 264 

Recording depths in PPC ranged from 500-1800µm, and in M2 ranged from 500-1800µm.   265 

 266 

  267 
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Fig. S1. Experimental methods for 3D tracking and neural recordings. 268 

 (A) Rats with retroreflective markers on the head and back ran in a 2m open octagonal arena 269 

with 6 high-speed (120fps) infrared cameras arranged above in a circle. (B) Custom dual 270 

microdrives were used to target 8-shank silicon probes to PPC and M2. The M2 drive was 271 

designed to target the cortical surface at 0.7 to 0.75mm lateral of midline, and was tilted 20° 272 

laterally to maximize travel in M2. The PPC drive was positioned 4mm behind the caudal-most 273 

shank on the M2 drive, and was centered 2.7mm lateral of midline. The PPC drive was tilted 274 

10° so that shanks advanced rostrally with turning. (C) Aerial view of cortical penetrations 275 

yielding single units in 11 rats, with brema labeled “B”, and tick marks indicating mm. 276 

Recording sites for frontal drives ranged from -0.48 to +4.2mm AP, and from ~0.6 to 2.0mm 277 

ML. Shanks targeting PPC spanned 1.7 to 3.7mm ML, and -3.0 to -4.5 AP. In two animals the 278 

posterior drive penetrated into caudal M2 (see Fig. S2). (D) Cresyl violet-stained coronal 279 

sections (40μm thick) showing recording tracks (red stippled lines) in M2 (left) and PPC (right). 280 
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Fig. S2. Recording locations of each shank that produced single units. 293 

Top two rows of maps (”M2 sites”) show architectonic boundaries at each AP location in nine 294 

rats where an M2-targeting drive recorded single units. Recording locations in M2 ranged 295 

from +4.20mm to -0.48mm AP; all recording sites were confirmed histologically as inside M2. 296 

The bottom row (”PPC sites”) shows coronal maps where single units were recorded in PPC 297 

and neighboring regions in eight rats. Recordings spanned the rostral-caudal extent of PPC, 298 

and in one animal (#23939) included area V2M (51). Probes in two rats (#21082 and #22986) 299 

had shanks at sites rostral to PPC, resulting in units recorded in caudal M2. Ten units in rat 300 

#21082 were recorded in M1 and analyzed separately. 301 
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Fig. S3. Tuning peak distributions in PPC and M2, and behavioral coverage. 319 

(A) The distribution of tuning peaks for head, back and neck position in PPC. For all features 320 

tested, the observed distributions of tuning peaks were significantly non-uniform (top to 321 

bottom: head pitch, χ2(9) = 104.3, P <0.001; head azimuth, χ2(9) = 64.8, P < 0.001; head roll, 322 

χ2(9) = 50.8, P < 0.001; back pitch, χ2(9) = 113.7, P < 0.001; back azimuth, χ2(9) = 166.6, P < 323 

0.001; neck elevation, χ2(9) = 55.9, P < 0.001), tending to accumulate in bins toward the 324 

periphery and with lower cumulative occupancy. (B) The distributions of tuning peaks in M2 325 

were also non-uniform, tending to accrete in peripheral bins with lower occupancy (top to 326 

bottom: head pitch, χ2(9) = 123, P <0.001; head azimuth, χ2(9) = 51.5, P < 0.001; head roll, 327 

χ2(9) = 38.4, P < 0.001; back pitch, χ2(9) = 106, P < 0.001; back azimuth, χ2(9) = 123.5, P < 0.001; 328 

neck elevation, χ2(9) = 63.9, P < 0.001). (C) (Left) Cumulative occupancy for all egocentric 329 

positions sampled across animals; (right) same data, but on a log scale to show that all bins 330 

had ≥5 sec of sampling. 331 
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Fig. S4. Postural tuning in PPC and M2 was stable across light and dark sessions 344 

(A) Examples of three cells in PPC with stable tuning to head azimuth (left), back pitch (middle) 345 

and neck elevation (right) in light and dark sessions. (B) Cumulative frequency distributions of 346 

Pearson’s correlations for all features of the head (left), back (middle) and for neck elevation 347 

(right) between two sessions in light, or one light and one dark session. The distributions of 348 

correlations did not differ significantly for any comparison (inset, K-S test, p > 0.05 in all cases). 349 

(C) Examples of three M2 cells with stable tuning across light and dark recording sessions 350 

(same as (A)). (D) Cumulative frequency distributions of Pearson’s correlations between light-351 

light’ and light-dark recording sessions for all head (left) and back features (middle), and neck 352 

elevation (right). The stability of tuning curves for the head were the only that varied between 353 

light and dark sessions, with the light-dark session showing slightly greater stability than the 354 

light-light’ session (D = 0.21, P < 0.001). 355 
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Fig. S5. Examples of postural tuning independent of self-motion in PPC and M2. 369 

Top, Cell 1 in PPC showed little tuning to self-motion (information rate 0.11 bits/sec; blue text 370 

above), but had sharp firing fields for combinations of head pitch, azimuth and roll (right, first 371 

2 panels). The cell was largely uninformative of angular head velocity, neck elevation, head 372 

direction or running speed (reflected by lower information rates). Cell 2 also had poor self-373 

motion tuning, but was highly sensitive to head pitch. Selectivity for head pitch was apparent 374 

across interactions, including with angular velocity, neck elevation, head direction and 375 

running speed (right panels). Below, Cell 3, from M2, did not have a significant self-motion 376 

correlate (information rate =0.10), but was strongly sensitive to combinations of pitch, 377 

azimuth and roll of the head (right), and showed little co-modulation by world-referenced 378 

features such as head direction or speed. Cell 4 exhibited a self-motion preference for 379 

rightward turns (left), but its firing rate was far more informative of head pitch and neck 380 

elevation than self-motion. The cell did not distinguish left from right head angular velocities 381 

(middle panel), it was not sensitive to head direction, nor was it modulated significantly by 382 

running speed. We also note that 3D postural tuning was maintained when self-motion maps 383 

were split into leftward or rightward displacements (not shown). 384 
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Fig. S6.  Splitting sessions by posture or movement reveals the primacy of posture. 394 

(A) (top, left) 1D tuning curve of a PPC neuron (Cell 1) tuned to head roll. (top, right) The 395 

recording session was split to only include leftward or rightward angular velocities for head 396 

roll, but this had no effect on postural tuning, demonstrating that posture was encoded 397 

independently of head movement. Immediately below, the firing rate Cell 1 is expressed as a 398 

function of angular head roll velocity, and the session is split (right) for when the head was 399 

rolled left or right (i.e position of the head). The velocity tuning curve of Cell 1 was not stable 400 

for the different head postures, demonstrating that apparent-velocity tuning in fact 401 

depended on the angle of the head. (below, left) The same comparisons were made for 402 

another PPC cell (Cell 2) tuned to back pitch, from a different recording session. As with the 403 

example above, tuning to pitch was invariant with regard to movement speed, but the 404 

apparent tuning to movement (below) varied substantially depending on the angle of the 405 

back. (B) (top) The same test was performed on an M2 neuron tuned to head pitch, which 406 

again demonstrated that postural tuning for the head was independent of movement 407 

velocity, but not vice versa. (bottom) An M2 cell showing the same effect for tuning to back 408 

azimuth. 409 
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Fig. S7.  Dimensionality reduction for visualization of postural tuning with a 2D rate map. 419 

(A) The six postural features we measured (head pitch, azimuth and roll, neck elevation, back 420 

pitch and azimuth) were rendered onto a single 2D surface using Isomap (Tenenbaum, 2000). 421 

Vertical features, such as head pitch, back pitch and neck height, are stretched along the 422 

ordinate (red arrow); head and back azimuth are represented along the abscissa (blue arrow); 423 

head roll (pink) occupies the corners. (B) Two example PPC cells (left) and two M2 cells (right) 424 

show discrete firing fields on 2D posture maps corresponding to the 3D postures of the rat 425 

models to the right. Population-level activity was used to decode dynamic position on the 426 

posture map in Figure 4A and Supplementary videos 7-8. 427 
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Fig. S8.  For all features, the majority of cells had tuning peaks at positions with <50% 444 

occupancy. 445 

(A) The duration that each bin was occupied for measures of head, neck and back position (as 446 

shown in Fig.4 (A) and (B)) was divided by total recording time to determine the percent 447 

occupancy per bin. Bins with <1% occupancy were excluded. The percentage of cells with 448 

significant tuning peaks (>3 SD above shuffled) was higher for posture bins with below-mean 449 

occupancy (e.g. for head pitch in both PPC and M2, 83% of cells had tuning peaks in bins with 450 

less than 20% relative occupancy). The inverse relationship between the number of tuned 451 

cells and occupancy was particularly clear for head and back azimuth. (B) Summary of results 452 

obtained in (A). The percentages of cells tuned were summed across levels of high/low 453 

occupancy in both regions, showing that that the mean percentage of cells tuned for “low 454 

occupancy” in PPC was 68% (99% CI: 53-82%), while the mean percentage for “high 455 

occupancy” was 14% (99% CI: 9-19%). For M2, the mean percentage for low occupancy was 456 

65% (99% CI: 47-84%), and 15% (99% CI: 9-22%) for “high occupancy.” Bar graphs depict the 457 

mean ±SEM. 458 
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Supplementary movies 492 

Movie S1. Animated demonstration of the behavioral arena and recreated 3D rat as rendered 493 

in our graphical user interface (GUI). Rats are portrayed by their head, back (3 red spheres), 494 

and neck (smaller green sphere). 495 

Movie S2. Overhead view of a rat foraging in the open field in the GUI. The animal is held in 496 

place artificially to visualize movement of the body. Spiking activity of a single PPC neuron can 497 

be heard when the animal flexes its head and spine to the right. 498 

Movie S3. Same as Movie S2, though in a different animal and viewed from the side, with a 499 

PPC neuron driven by rearing. 500 

Movie S4. Example of an M2 neuron selective for leftward roll of the head. 501 

Movie S5. An M2 neuron driven by the combined turning of the head to the right while the 502 

animal is reared up. The neuron continues to spike while the animal remains still in the cell’s 503 

preferred posture. 504 

Movie S6. A PPC neuron that fires maximally when the head is raised at a high angle relative 505 

to the back, tending to occur just before rearing. 506 

Movie S7. (left) 3D animation depicting the behavior of a rat in the open field, played at 1/3 507 

speed. (right) Synchronized frame-by-frame decoding of the animal’s posture on a 2D 508 

“posture map” using simultaneously recorded ensembles in PPC and M2. The true posture of 509 

the rat is indicated by a green “X”, and color-coding depicts the posterior distribution of the 510 

animal’s posture estimated using spiking activity from PPC and M2. 511 

Movie S8. Same as Movie S7, taken from later in the same recording session. 512 



References and Notes 
1. H. Head, G. Holmes, Sensory disturbances from cerebral lesions I. Brain 34, 102–254 

(1911). doi:10.1093/brain/34.2-3.102 

2. M. Critchley, The Parietal Lobes (Williams and Wilkins, 1953). 

3. V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, C. Acuna, Posterior parietal 
association cortex of the monkey: Command functions for operations within 
extrapersonal space. J. Neurophysiol. 38, 871–908 (1975). 
doi:10.1152/jn.1975.38.4.871 Medline 

4. J. Tanji, E. V. Evarts, Anticipatory activity of motor cortex neurons in relation to direction 
of an intended movement. J. Neurophysiol. 39, 1062–1068 (1976). 
doi:10.1152/jn.1976.39.5.1062 Medline 

5. R. A. Andersen, V. B. Mountcastle, The influence of the angle of gaze upon the 
excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 
3, 532–548 (1983). doi:10.1523/JNEUROSCI.03-03-00532.1983 Medline 

6. A. P. Georgopoulos, R. E. Kettner, A. B. Schwartz, Primate motor cortex and free arm 
movements to visual targets in three-dimensional space. II. Coding of the direction of 
movement by a neuronal population. J. Neurosci. 8, 2928–2937 (1988). 
doi:10.1523/JNEUROSCI.08-08-02928.1988 Medline 

7. J. Wessberg, C. R. Stambaugh, J. D. Kralik, P. D. Beck, M. Laubach, J. K. Chapin, J. Kim, 
S. J. Biggs, M. A. Srinivasan, M. A. L. Nicolelis, Real-time prediction of hand 
trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000). 
doi:10.1038/35042582 Medline 

8. R. A. Andersen, C. A. Buneo, Intentional maps in posterior parietal cortex. Annu. Rev. 
Neurosci. 25, 189–220 (2002). doi:10.1146/annurev.neuro.25.112701.142922 
Medline 

9. M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, J. P. Donoghue, Instant 
neural control of a movement signal. Nature 416, 141–142 (2002). 
doi:10.1038/416141a Medline 

10. M. Hauschild, G. H. Mulliken, I. Fineman, G. E. Loeb, R. A. Andersen, Cognitive signals 
for brain-machine interfaces in posterior parietal cortex include continuous 3D 
trajectory commands. Proc. Natl. Acad. Sci. U.S.A. 109, 17075–17080 (2012). 
doi:10.1073/pnas.1215092109 Medline 

11. B. Kolb, R. J. Sutherland, I. Q. Whishaw, A comparison of the contributions of the frontal 
and parietal association cortex to spatial localization in rats. Behav. Neurosci. 97, 13–
27 (1983). doi:10.1037/0735-7044.97.1.13 Medline 

12. J. C. Erlich, M. Bialek, C. D. Brody, A cortical substrate for memory-guided orienting in 
the rat. Neuron 72, 330–343 (2011). doi:10.1016/j.neuron.2011.07.010 Medline 

13. B. L. McNaughton, S. J. Y. Mizumori, C. A. Barnes, B. J. Leonard, M. Marquis, E. J. 
Green, Cortical representation of motion during unrestrained spatial navigation in the 
rat. Cereb. Cortex 4, 27–39 (1994). doi:10.1093/cercor/4.1.27 Medline 

14. J. R. Whitlock, G. Pfuhl, N. Dagslott, M. B. Moser, E. I. Moser, Functional split between 
parietal and entorhinal cortices in the rat. Neuron 73, 789–802 (2012). 
doi:10.1016/j.neuron.2011.12.028 Medline 

http://dx.doi.org/10.1093/brain/34.2-3.102
http://dx.doi.org/10.1152/jn.1975.38.4.871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=808592&dopt=Abstract
http://dx.doi.org/10.1152/jn.1976.39.5.1062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=824409&dopt=Abstract
http://dx.doi.org/10.1523/JNEUROSCI.03-03-00532.1983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6827308&dopt=Abstract
http://dx.doi.org/10.1523/JNEUROSCI.08-08-02928.1988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3411362&dopt=Abstract
http://dx.doi.org/10.1038/35042582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11099043&dopt=Abstract
http://dx.doi.org/10.1146/annurev.neuro.25.112701.142922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12052908&dopt=Abstract
http://dx.doi.org/10.1038/416141a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11894084&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1215092109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23027946&dopt=Abstract
http://dx.doi.org/10.1037/0735-7044.97.1.13
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6838719&dopt=Abstract
http://dx.doi.org/10.1016/j.neuron.2011.07.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22017991&dopt=Abstract
http://dx.doi.org/10.1093/cercor/4.1.27
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8180489&dopt=Abstract
http://dx.doi.org/10.1016/j.neuron.2011.12.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22365551&dopt=Abstract


15. D. A. Nitz, Tracking route progression in the posterior parietal cortex. Neuron 49, 747–
756 (2006). doi:10.1016/j.neuron.2006.01.037 Medline 

16. C. D. Harvey, P. Coen, D. W. Tank, Choice-specific sequences in parietal cortex during a 
virtual-navigation decision task. Nature 484, 62–68 (2012). doi:10.1038/nature10918 
Medline 

17. A. A. Wilber, B. J. Clark, T. C. Forster, M. Tatsuno, B. L. McNaughton, Interaction of 
egocentric and world-centered reference frames in the rat posterior parietal cortex. J. 
Neurosci. 34, 5431–5446 (2014). doi:10.1523/JNEUROSCI.0511-14.2014 Medline 

18. E. B. Cutrell, R. T. Marrocco, Electrical microstimulation of primate posterior parietal 
cortex initiates orienting and alerting components of covert attention. Exp. Brain Res. 
144, 103–113 (2002). doi:10.1007/s00221-002-1032-x Medline 

19. K. Hardcastle, N. Maheswaranathan, S. Ganguli, L. M. Giocomo, A multiplexed, 
heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron 
94, 375–387.e7 (2017). doi:10.1016/j.neuron.2017.03.025 Medline 

20. J. Hyvärinen, Regional distribution of functions in parietal association area 7 of the 
monkey. Brain Res. 206, 287–303 (1981). doi:10.1016/0006-8993(81)90533-3 
Medline 

21. I. Stepniewska, P. C. Fang, J. H. Kaas, Microstimulation reveals specialized subregions 
for different complex movements in posterior parietal cortex of prosimian galagos. 
Proc. Natl. Acad. Sci. U.S.A. 102, 4878–4883 (2005). doi:10.1073/pnas.0501048102 
Medline 

22. R. D. Hall, E. P. Lindholm, Organization of motor and somatosensory neocortex in albino 
rat. Brain Res. 66, 23–38 (1974). doi:10.1016/0006-8993(74)90076-6 

23. M. Brecht, A. Krauss, S. Muhammad, L. Sinai-Esfahani, S. Bellanca, T. W. Margrie, 
Organization of rat vibrissa motor cortex and adjacent areas according to 
cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. 
J. Comp. Neurol. 479, 360–373 (2004). doi:10.1002/cne.20306 Medline 

24. S. P. Wise, D. Boussaoud, P. B. Johnson, R. Caminiti, Premotor and parietal cortex: 
Corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci. 
20, 25–42 (1997). doi:10.1146/annurev.neuro.20.1.25 Medline 

25. G. Rizzolatti, L. Fogassi, V. Gallese, Parietal cortex: From sight to action. Curr. Opin. 
Neurobiol. 7, 562–567 (1997). doi:10.1016/S0959-4388(97)80037-2 Medline 

26. B. Pesaran, M. J. Nelson, R. A. Andersen, Free choice activates a decision circuit 
between frontal and parietal cortex. Nature 453, 406–409 (2008). 
doi:10.1038/nature06849 Medline 

27. T. D. Hanks, C. D. Kopec, B. W. Brunton, C. A. Duan, J. C. Erlich, C. D. Brody, Distinct 
relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 
220–223 (2015). doi:10.1038/nature14066 Medline 

28. J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric framework for 
nonlinear dimensionality reduction. Science 290, 2319–2323 (2000). 
doi:10.1126/science.290.5500.2319 Medline 

29. P. R. Brotchie, R. A. Andersen, L. H. Snyder, S. J. Goodman, Head position signals used 
by parietal neurons to encode locations of visual stimuli. Nature 375, 232–235 (1995). 
doi:10.1038/375232a0 Medline 

http://dx.doi.org/10.1016/j.neuron.2006.01.037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16504949&dopt=Abstract
http://dx.doi.org/10.1038/nature10918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22419153&dopt=Abstract
http://dx.doi.org/10.1523/JNEUROSCI.0511-14.2014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24741034&dopt=Abstract
http://dx.doi.org/10.1007/s00221-002-1032-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11976764&dopt=Abstract
http://dx.doi.org/10.1016/j.neuron.2017.03.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28392071&dopt=Abstract
http://dx.doi.org/10.1016/0006-8993(81)90533-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7214136&dopt=Abstract
http://dx.doi.org/10.1073/pnas.0501048102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15772167&dopt=Abstract
http://dx.doi.org/10.1016/0006-8993(74)90076-6
http://dx.doi.org/10.1002/cne.20306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15514982&dopt=Abstract
http://dx.doi.org/10.1146/annurev.neuro.20.1.25
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9056706&dopt=Abstract
http://dx.doi.org/10.1016/S0959-4388(97)80037-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9287198&dopt=Abstract
http://dx.doi.org/10.1038/nature06849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18418380&dopt=Abstract
http://dx.doi.org/10.1038/nature14066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25600270&dopt=Abstract
http://dx.doi.org/10.1126/science.290.5500.2319
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11125149&dopt=Abstract
http://dx.doi.org/10.1038/375232a0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7746323&dopt=Abstract


30. A. P. Batista, C. A. Buneo, L. H. Snyder, R. A. Andersen, Reach plans in eye-centered 
coordinates. Science 285, 257–260 (1999). doi:10.1126/science.285.5425.257 
Medline 

31. E. Salinas, P. Thier, Gain modulation: A major computational principle of the central 
nervous system. Neuron 27, 15–21 (2000). doi:10.1016/S0896-6273(00)00004-0 
Medline 

32. G. H. Mulliken, S. Musallam, R. A. Andersen, Decoding trajectories from posterior 
parietal cortex ensembles. J. Neurosci. 28, 12913–12926 (2008). 
doi:10.1523/JNEUROSCI.1463-08.2008 Medline 

33. L. Fogassi, V. Gallese, L. Fadiga, G. Luppino, M. Matelli, G. Rizzolatti, Coding of 
peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 76, 141–157 
(1996). doi:10.1152/jn.1996.76.1.141 Medline 

34. T. M. Pearce, D. W. Moran, Strategy-dependent encoding of planned arm movements in 
the dorsal premotor cortex. Science 337, 984–988 (2012). 
doi:10.1126/science.1220642 Medline 

35. G. M. Shepherd, Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 
14, 278–291 (2013). doi:10.1038/nrn3469 Medline 

36. G. Cui, S. B. Jun, X. Jin, M. D. Pham, S. S. Vogel, D. M. Lovinger, R. M. Costa, 
Concurrent activation of striatal direct and indirect pathways during action initiation. 
Nature 494, 238–242 (2013). doi:10.1038/nature11846 Medline 

37. J. J. Wilson, N. Alexandre, C. Trentin, M. Tripodi, Three-dimensional representation of 
motor space in the mouse superior colliculus. Curr. Biol. 28, 1744–1755.e12 (2018). 
doi:10.1016/j.cub.2018.04.021 Medline 

38. M. S. Esposito, P. Capelli, S. Arber, Brainstem nucleus MdV mediates skilled forelimb 
motor tasks. Nature 508, 351–356 (2014). doi:10.1038/nature13023 Medline 

39. J. E. Markowitz, W. F. Gillis, C. C. Beron, S. Q. Neufeld, K. Robertson, N. D. Bhagat, R. 
E. Peterson, E. Peterson, M. Hyun, S. W. Linderman, B. L. Sabatini, S. R. Datta, The 
striatum organizes 3D behavior via moment-to-moment action selection. Cell 174, 
44–58.e17 (2018). doi:10.1016/j.cell.2018.04.019 

40. X. Chen, G. C. Deangelis, D. E. Angelaki, Diverse spatial reference frames of vestibular 
signals in parietal cortex. Neuron 80, 1310–1321 (2013). 
doi:10.1016/j.neuron.2013.09.006 Medline 

41. F. Klam, W. Graf, Vestibular response kinematics in posterior parietal cortex neurons of 
macaque monkeys. Eur. J. Neurosci. 18, 995–1010 (2003). doi:10.1046/j.1460-
9568.2003.02813.x Medline 

42. N. S. Harper, D. McAlpine, Optimal neural population coding of an auditory spatial cue. 
Nature 430, 682–686 (2004). doi:10.1038/nature02768 Medline 

43. D. Ganguli, E. P. Simoncelli, Efficient sensory encoding and Bayesian inference with 
heterogeneous neural populations. Neural Comput. 26, 2103–2134 (2014). 
doi:10.1162/NECO_a_00638 Medline 

44. B. Mimica, Efficient cortical coding of 3D posture in freely behaving rats – data and GUI, 
Norstore (2018); https://doi.org/10.11582/2018.00028. 

45. M. Fyhn, S. Molden, M. P. Witter, E. I. Moser, M.-B. Moser, Spatial representation in the 
entorhinal cortex. Science 305, 1258–1264 (2004). doi:10.1126/science.1099901 

http://dx.doi.org/10.1126/science.285.5425.257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10398603&dopt=Abstract
http://dx.doi.org/10.1016/S0896-6273(00)00004-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10939327&dopt=Abstract
http://dx.doi.org/10.1523/JNEUROSCI.1463-08.2008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19036985&dopt=Abstract
http://dx.doi.org/10.1152/jn.1996.76.1.141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8836215&dopt=Abstract
http://dx.doi.org/10.1126/science.1220642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22821987&dopt=Abstract
http://dx.doi.org/10.1038/nrn3469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23511908&dopt=Abstract
http://dx.doi.org/10.1038/nature11846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23354054&dopt=Abstract
http://dx.doi.org/10.1016/j.cub.2018.04.021
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29779875&dopt=Abstract
http://dx.doi.org/10.1038/nature13023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24487621&dopt=Abstract
https://doi.org/10.1016/j.cell.2018.04.019
http://dx.doi.org/10.1016/j.neuron.2013.09.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24239126&dopt=Abstract
http://dx.doi.org/10.1046/j.1460-9568.2003.02813.x
http://dx.doi.org/10.1046/j.1460-9568.2003.02813.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12925025&dopt=Abstract
http://dx.doi.org/10.1038/nature02768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15295602&dopt=Abstract
http://dx.doi.org/10.1162/NECO_a_00638
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25058702&dopt=Abstract
https://doi.org/10.11582/2018.00028
https://doi.org/10.1126/science.1099901


46. M. Pachitariu, N. Steinmetz, S. Kadir, M. Carandini, K. D. Harris, Kilosort: Realtime 
spike-sorting for extracellular electrophysiology with hundreds of channels. bioRxiv 
061481 [Preprint]. 30 June 2016. https://doi.org/10.1101/061481. 

47. K. S. Arun, T. S. Huang, S. D. Blostein, Least-squares fitting of two 3-D point sets. IEEE 
Trans. Pattern Anal. Machine Intell. 9, 698–700 (1987). 
doi:10.1109/TPAMI.1987.4767965 Medline 

48. J. A. Nelder, W. M. Wedderburn, Generalized linear models. J. R. Stat. Soc. Ser. A 135, 
370–384 (1972). doi:10.2307/2344614 

49. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, 
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. 
Brucher, M. Perrot, É. Duchesnay, Scikit-learn: Machine learning in Python. J. Mach. 
Learn. Res. 12, 2825–2830 (2011). 

50. D. G. Krige, A statistical approach to some basic mine valuation problems on the 
Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52, 119–139 (1951). 

51. G. Paxinos, C. Watson, The Rat Brain in Stereotaxic Coordinates (Academic Press, 
2013). 

https://doi.org/10.1101/061481
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21869429&dopt=Abstract
http://dx.doi.org/10.2307/2344614

	science_main
	science_supp
	MDTBW_Supplementary_Materials_REVISED_NEW
	FigureS1
	FigureS2
	FigureS3
	FigureS4
	FigureS5
	FigureS6
	FigureS7
	FigureS8
	Table_S1
	Table_S2




